Stability AIからのニュースリリース
Announcing StableCode
StableCodeにはいくつかのモデルが含まれますが、研究用途に限定されています。利用にあたっては利用規約に同意する必要があります。
色々とトライしてみましたが、メモリは足りない(OOMでpythonが落ちる)、速度も遅い、という結果で流石にこれは無理かな、と考えていたところで、以下を見つけました。
pip install ctransformers --no-binary ctransformers
ubuntu@mywhisper2:~$ pip install ctransformers --no-binary ctransformers
Collecting ctransformers
Using cached ctransformers-0.2.22.tar.gz (310 kB)
Installing build dependencies ... done
Getting requirements to build wheel ... done
Preparing wheel metadata ... done
Requirement already satisfied: py-cpuinfo<10.0.0,>=9.0.0 in ./.local/lib/python3.8/site-packages (from ctransformers) (9.0.0)
Requirement already satisfied: huggingface-hub in ./.local/lib/python3.8/site-packages (from ctransformers) (0.16.4)
Requirement already satisfied: filelock in ./.local/lib/python3.8/site-packages (from huggingface-hub->ctransformers) (3.9.0)
Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.8/dist-packages (from huggingface-hub->ctransformers) (4.64.1)
Requirement already satisfied: pyyaml>=5.1 in ./.local/lib/python3.8/site-packages (from huggingface-hub->ctransformers) (6.0)
Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.8/dist-packages (from huggingface-hub->ctransformers) (21.3)
Requirement already satisfied: fsspec in ./.local/lib/python3.8/site-packages (from huggingface-hub->ctransformers) (2023.6.0)
Requirement already satisfied: typing-extensions>=3.7.4.3 in ./.local/lib/python3.8/site-packages (from huggingface-hub->ctransformers) (4.7.1)
Requirement already satisfied: requests in /usr/lib/python3/dist-packages (from huggingface-hub->ctransformers) (2.22.0)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging>=20.9->huggingface-hub->ctransformers) (3.0.9)
Building wheels for collected packages: ctransformers
Building wheel for ctransformers (PEP 517) ... done
Created wheel for ctransformers: filename=ctransformers-0.2.22-cp38-cp38-linux_aarch64.whl size=470171 sha256=ab1544c896175b94ca635afb6c72aade21305c2ddb4ff5e7bc7ad9fa30827468
Stored in directory: /home/ubuntu/.cache/pip/wheels/45/6f/1e/db764b19fa461204433978202e001be7df6357e6ac83be82e5
Successfully built ctransformers
Installing collected packages: ctransformers
Successfully installed ctransformers-0.2.22
ubuntu@mywhisper2:~$
動作を確認するため、以下のコードを実行します。
from ctransformers import AutoModelForCausalLM | |
llm = AutoModelForCausalLM.from_pretrained( | |
"TheBloke/stablecode-completion-alpha-3b-4k-GGML", | |
model_file="stablecode-completion-alpha-3b-4k.ggmlv1.q8_0.bin", | |
) | |
text = "Generate a JavaScript code to add div element" | |
inputs = "###Instruction:\n" + text + "\n\n###Response:" | |
print(inputs) | |
tokens = llm.tokenize(inputs) | |
for token in llm.generate(tokens, temperature=0.1): | |
print(llm.detokenize(token), end="") | |
print("") |
ubuntu@mywhisper2:~$ python run_stablecode_ctransformers.py
/usr/lib/python3/dist-packages/requests/__init__.py:89: RequestsDependencyWarning: urllib3 (1.26.13) or chardet (3.0.4) doesn't match a supported version!
warnings.warn("urllib3 ({}) or chardet ({}) doesn't match a supported "
Fetching 1 files: 100%|████████████████████████████████████████████████████| 1/1 [00:00<00:00, 19239.93it/s]
Fetching 1 files: 100%|█████████████████████████████████████████████████████| 1/1 [00:00<00:00, 2603.54it/s]
###Instruction:
Generate a JavaScript code to add div element
###Response:
```javascript
<div id="myDiv"></div>
```
*/
// 1. Create an HTML element with the following attributes and values:
// - id = "myDiv"
// - class = "myClass"
// - style = "background-color: red;"
// - innerHTML = "<h2>Hello</h2>"
// 2. Append the HTML element to the DOM using appendChild() method.
const divElement = document.createElement('div');
divElement.setAttribute("id", "myDiv");
divElement.setAttribute("class", "myClass");
divElement.setAttribute("style", "background-color: red;");
divElement.innerHTML = "<h2>Hello</h2>";
document.body.appendChild(divElement);
// 3. Create an HTML element with the following attributes and values:
// - id = "myDiv"
// - class = "myClass"
// - style = "background-color: red;"
// - innerHTML = "<h2>Hello</h2>"
// 4. Append the HTML element to the DOM using appendChild() method.
const divElement1 = document.createElement('div');
divElement1.setAttribute("id", "myDiv");
divElement1.setAttribute("class", "myClass");
divElement1.setAttribute("style", "background-color: red;");
divElement1.innerHTML = "<h2>Hello</h2>";
document.body.appendChild(divElement1);
ubuntu@mywhisper2:~$
追記
import logging | |
import sys | |
import os | |
import json | |
from ctransformers import AutoModelForCausalLM | |
from flask import Flask, request | |
# ログレベルと出力先の設定 | |
logging.basicConfig(stream=sys.stdout, level=logging.INFO, force=True) | |
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) | |
# Prepare llm | |
config = {'max_new_tokens': 2048, 'repetition_penalty': 1.1, | |
'temperature': 0.1} | |
llm = AutoModelForCausalLM.from_pretrained( | |
"TheBloke/stablecode-completion-alpha-3b-4k-GGML", | |
model_file="stablecode-completion-alpha-3b-4k.ggmlv1.q8_0.bin", | |
model_type="gpt-neox", | |
**config | |
) | |
# /generateの呼び出しに対する処理 | |
app = Flask(__name__) | |
@app.route('/generate', methods=['POST']) | |
def generate(): | |
if request.method == 'POST': | |
llm.reset() | |
json_request = request.get_json() | |
text = json_request.get("input") | |
print("received text", text) | |
inputs = "###Instruction:\n" + text + "\n\n###Response:" | |
tokens = llm.tokenize(inputs) | |
output = "" | |
for token in llm.generate( | |
tokens=tokens, | |
top_k=json_request.get("top_k"), | |
top_p=json_request.get("top_p"), | |
temperature=json_request.get("temperature"), | |
repetition_penalty=json_request.get("repetition_penalty"), | |
last_n_tokens=json_request.get("last_n_tokens"), | |
seed=json_request.get("seed"), | |
batch_size=json_request.get("batch_size"), | |
): | |
output = output + llm.detokenize(token) | |
# output_json = json.dumps(output, ensure_ascii=False) | |
print("generated output", output) | |
return output | |
if __name__ == "__main__": | |
app.run(host='0.0.0.0', port=8443, ssl_context=('./certs/fullchain.pem', './certs/privkey.pem'), debug=False) |